One particularly useful method for studying Gliese 12 b, which isn't possible for non-transiting planets, is atmospheric transmission spectroscopy. This technique involves analyzing the starlight that passes through a planet's atmosphere during transit.

By studying the changes in the light's spectra, scientists can infer the composition of the planet's atmosphere, identifying gases like oxygen, water, methane and carbon dioxide, which could indicate biological processes.

The discovery of Gliese 12 b is a stepping stone towards finding potentially habitable planets and understanding the conditions that make life possible.

Current and future telescopes, such as the James Webb Space Telescope and ground-based extremely large telescopes, will play crucial roles in further investigations. These instruments will allow scientists to conduct more detailed studies of Gliese 12 b's atmosphere and surface conditions.

The discovery of Gliese 12 b, a nearby possibly habitable exoplanet, is a thrilling development in the quest to find Earth-like planets and, potentially, extraterrestrial life. As we continue to explore the cosmos, each new discovery brings us closer to answering the age-old question: Are we alone in the universe?

For now, Gliese 12 b stands as a beacon of hope and curiosity, inviting us to learn more about the possibilities that lie beyond our own solar system.
The Conversation

Vigneshwaran Krishnamurthy, Postdoctoral Researcher, Astrophysics, McGill University and Hiroyuki Tako Ishikawa, Postdoctoral Researcher, Astrophysics, Western University